Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607803

RESUMO

The occurrence of maize ear rot caused by Fusarium verticillioides (F. verticillioides) poses a threat to the yield and quality of maize. Mefentrifluconazole enantiomers appear to have strong stereoselective activity against F. verticillioides and cause differences in fumonisin production. We evaluated the stereoselective activity of mefentrifluconazole enantiomers by determining inhibition of the strain, hyphae, and conidia. Strain inhibition by R-(-)-mefentrifluconazole was 241 times higher than S-(+)-mefentrifluconazole and 376 times higher in conidia inhibition. For the mechanism of the enantioselective bioactivity, R-mefentrifluconazole had stronger binding to proteins than S-(+)-mefentrifluconazole. Under several concentration conditions, the fumonisin concentration was 1.3-24.9-fold higher in the R-(-)-mefentrifluconazole treatment than in the S-(+)-mefentrifluconazole treatment. The R-enantiomer stimulated fumonisin despite a higher bioactivity. As the incubation time increased, the stimulation of the enantiomers on fumonisin production decreased. R-(-)-Mefentrifluconazole stimulated higher fumonisin production in F. verticillioides at 25 °C compared to 30 °C. This study established a foundation for the development of high-efficiency and low-risk pesticides.

2.
J Environ Manage ; 357: 120776, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579468

RESUMO

Hydro-Fluctuation Belt (HFB), a periodically exposed bank area formed by changes in water level fluctuations, is critical for damaging the reservoir wetland landscape and ecological balance. Thus, it is important to explore the mechanism of hydrological conditions on the plant-soil system of the HFB for protection of the reservoir wetland and landscape restoration. Here, we investigated the response of plant community characteristics and soil environment of the HFB of Tonghui River National Wetland Park (China), is a typical reservoir wetland, to the duration of inundation, as well as the correlation between the distribution of dominant plants and soil pH, nutrient contents, and enzyme activity by linear regression and canonical correlation analyses. The results show that as the duration of inundation decreases, the vegetation within the HFB is successional from annual or biennial herbs to perennial herbs and shrubs, with dominant plant species prominent and uneven distribution of species. Soil nutrient contents and enzyme activities of HFB decreased with increasing inundation duration. Dominant species of HFB plant community are related to soil environment, with water content, pH, urease, and available potassium being principle soil environmental factors affecting their distribution. When HFB was inundated for 0-30 days, soil pH was strongly acidic, with available potassium content above 150 mg kg-1 and higher urease activity, distributed with Arundo donax L., Polygonum perfoliatum L., Alternanthera philoxeroides (Mart.) Griseb., and Daucus carota L. communities. When inundated for 30-80 days, soil pH was acidic, with lower available potassium content (50-150 mg kg-1) and urease activity, distributed with Beckmannia syzigachne (Steud.) Fern.+ Polygonum lapathifolium L., Polygonum lapathifolium L., Medicago lupulina L. + Dysphania ambrosioides L. and Leptochloa panicea (Retz.) Ohwi communities. Using the constructed HFB plant-soil correlation model, changes in the wetland soil environment can be quickly judged by the succession of plant dominant species, which provides a simpler method for the monitoring of the soil environment in the reservoir wetland, and is of great significance for the scientific management and reasonable protection of the reservoir-type wetland ecosystem.


Assuntos
Ecossistema , Áreas Alagadas , Solo/química , Urease , Plantas , Água , Poaceae , China , Potássio
3.
Food Microbiol ; 120: 104486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431331

RESUMO

Auricularia auricula fermentation was performed to reduce anti-nutritional factors, improve nutritional components, and enhance biological activity of soybean. Results showed that the contents of raffinose, stachyose, and trypsin inhibitor were significantly decreased from initial 1.65 g L-1, 1.60 g L-1, and 284.67 µg g-1 to 0.14 g L-1, 0.35 g L-1, and 4.52 µg g-1 after 144 h of fermentation, respectively. Simultaneously, the contents of polysaccharide, total phenolics, and total flavonoids were increased, and melanin was secreted. The isoflavone glycosides were converted to their aglycones, and the contents of glyctin and genistin were decreased from initial 1107.99 µg g-1 and 2852.26 µg g-1 to non-detection after 72 h of fermentation, respectively. After 96 h of fermentation, the IC50 values of samples against DPPH and ABTS radicals scavenging were decreased from 17.61 mg mL-1 and 3.43 mg mL-1 to 4.63 mg mL-1 and 0.89 mg mL-1, and those of samples inhibiting α-glucosidase and angiotensin I-converting enzyme were decreased from 53.89 mg mL-1 and 11.27 mg mL-1 to 18.24 mg mL-1 and 6.78 mg mL-1, respectively, indicating the significant increase in these bioactivities. These results suggested A. auricula fermentation can enhance the nutritional quality and biological activity of soybean, and the fermented soybean products have the potential to be processed into health foods/food additives.


Assuntos
Antioxidantes , Auricularia , Soja , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fermentação , Fungos/metabolismo
4.
Ecotoxicol Environ Saf ; 272: 116019, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295734

RESUMO

Agricultural production relies heavily on pesticides. However, factors like inefficient application, pesticide resistance, and environmental conditions reduce their effective utilization in agriculture. Subsequently, pesticides transfer into the soil, adversely affecting its physicochemical properties, microbial populations, and enzyme activities. Different pesticides interacting can lead to combined toxicity, posing risks to non-target organisms, biodiversity, and organism-environment interactions. Pesticide exposure may cause both acute and chronic effects on human health. Biochar, with its high specific surface area and porosity, offers numerous adsorption sites. Its stability, eco-friendliness, and superior adsorption capabilities render it an excellent choice. As a versatile material, biochar finds use in agriculture, environmental management, industry, energy, and medicine. Added to soil, biochar helps absorb or degrade pesticides in contaminated areas, enhancing soil microbial activity. Current research primarily focuses on biochar produced via direct pyrolysis for pesticide adsorption. Studies on functionalized biochar for this purpose are relatively scarce. This review examines biochar's pesticide absorption properties, its characteristics, formation mechanisms, environmental impact, and delves into adsorption mechanisms, functionalization methods, and their prospects and limitations.


Assuntos
Praguicidas , Poluentes do Solo , Humanos , Praguicidas/química , Adsorção , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química , Biodiversidade
5.
Int J Biol Macromol ; 247: 125663, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399880

RESUMO

Hydrogels for wound dressings have recently attracted considerable attention in the field of biomedical materials. Developing hydrogel dressings with multiple functions, including good antibacterial, mechanical and adhesive properties, to enhance wound regeneration is significant for clinical applications. To this end, a novel hydrogel wound dressing (PB-EPL/TA@BC) was developed, which was prepared by incorporating bacterial cellulose (BC) modified with tannic acid and ε-polylysine (EPL) into a PVA and borax matrix through a simple method without introducing any other chemical reagents. The hydrogel exhibited good adhesion (8.8 ± 0.2 kPa) to porcine skin, and the mechanical properties were significantly improved after adding BC. Meanwhile, it showed good inhibition against Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (84.1 ± 2.6 %, 86.0 ± 2.3 % and 80.7 ± 4.5 %) in vitro and Methicillin-resistant Staphylococcus aureus (MRSA) in vivo without the use of antibiotics, ensuring that the process of wound repair with a sterile environment. The hydrogel also presented good cytocompatibility and biocompatibility and could achieve hemostasis within 120 s. The in vivo experiments indicated that hydrogel could not only instantly complete hemostasis of the injured liver models but also obviously promote wound healing in a full-thickness skin. Furthermore, the hydrogel accelerated wound healing process by reducing inflammation promoting collagen deposition compared with commercial Tegaderm™ films. Therefore, the hydrogel is a promising high-end dressing material for wound hemostasis and repair for to enhance the wound healing.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Polifenóis , Suínos , Animais , Polifenóis/farmacologia , Polilisina/farmacologia , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Celulose/farmacologia , Escherichia coli , Cicatrização
6.
Pest Manag Sci ; 79(12): 4784-4794, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37471098

RESUMO

BACKGROUND: Yield loss and toxin contamination caused by wheat Fusarium head blight (FHB) have always been a worldwide concern. Cultivating disease-resistant varieties and fungicide application are effective measures to control FHB. The comprehensive control technology system for FHB and toxin contamination of wheat in Anhui Province needs further improvement. This study compared the control efficacy of different wheat varieties, fungicides and application times on wheat FHB and deoxynivalenol (DON) contamination, and the dynamic change of DON accumulation after application. RESULTS: Among the 93 main wheat varieties in Anhui Province, the disease-resistant and low-toxic wheat variety "Ningmai 26" was more suitable for planting in the central part of Anhui Province. At the same time, "Yangmai 22" was used for subsequent experiments. The field efficacy trials of different fungicides showed that 30% prothioconazole oil dispersion (OD) had the highest control efficacy on FHB and DON contamination, reaching 94.33 and 77.49%, respectively. The study on the optimum application time of prothioconazole showed that the 0-20% flowering stage was the key point of DON control. The survey of the dynamic changes of DON accumulation showed that prothioconazole could significantly reduce the level of DON accumulation while inhibiting the accumulation rate of DON. At the same time, the control fungicide carbendazim increased the level of DON contamination. CONCLUSION: This study will provide excellent germplasm resources for cultivating disease-resistant and low-toxic wheat varieties, and provide a theoretical reference for establishing a collaborative prevention and control system of disease control and toxin reduction. © 2023 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Fusarium , Tricotecenos , Triticum , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle
7.
Sci Total Environ ; 874: 162585, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870510

RESUMO

Honey bees play an important role in the ecological environment. Regrettably, a decline in honey bee colonies caused by chemical insecticides has occurred throughout the world. Potential stereoselective toxicity of chiral insecticides may be a hidden source of danger to bee colonies. In this study, the stereoselective exposure risk and mechanism of malathion and its chiral metabolite malaoxon were investigated. The absolute configurations were identified using an electron circular dichroism (ECD) model. Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for chiral separation. In pollen, the initial residues of malathion and malaoxon enantiomers were 3571-3619 and 397-402 µg/kg, respectively, and R-malathion degraded relatively slowly. The oral LD50 values of R-malathion and S-malathion were 0.187 and 0.912 µg/bee with 5 times difference, respectively, and the malaoxon values were 0.633 and 0.766 µg/bee. The Pollen Hazard Quotient (PHQ) was used to evaluate exposure risk. R-malathion showed a higher risk. An analysis of the proteome, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and subcellular localization, indicated that energy metabolism and neurotransmitter transport were the main affected pathways. Our results provide a new scheme for the evaluation of the stereoselective exposure risk of chiral pesticides to honey bees.


Assuntos
Inseticidas , Estupro , Abelhas , Animais , Malation/toxicidade , Malation/química , Inseticidas/toxicidade , Inseticidas/análise , Proteoma , Cromatografia Líquida , Espectrometria de Massas em Tandem
8.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677638

RESUMO

Chlorfenapyr, as a highly effective and low-toxicity insect growth regulation inhibitor, has been used to control cross-cruciferous vegetable pests. However, the pesticide residue caused by its application threatens human health. In this paper, the residue digestion and final residue of chlorfenapyr in radish were studied in a field experiment. The results of the dynamic digestion test showed that the half-life of chlorfenapyr in radish leaves ranged from 6.0 to 6.4 days, and the digestion rate was fast. The median residual values of chlorfenapyr in radish and radish leaves at 14 days after treatment were 0.12 and 3.92 mg/kg, respectively. The results of the dietary intake risk assessment showed that the national estimated daily intake (NEDI) of chlorfenapyr in various populations in China were 0.373 and 5.66 µg/(kg bw·d), respectively. The risk entropy (RQ) was 0.012 and 0.147, respectively, indicating that the chronic dietary intake risk of chlorfenapyr in radish was low. The results of this study provided data support and a theoretical basis for guiding the scientific use of chlorfenapyr in radish production and evaluating the dietary risk of chlorfenapyr in vegetables.


Assuntos
Inseticidas , Resíduos de Praguicidas , Piretrinas , Raphanus , Humanos , Piretrinas/análise , Resíduos de Praguicidas/análise , Medição de Risco , Inseticidas/análise
9.
J Agric Food Chem ; 71(3): 1426-1433, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630283

RESUMO

Fluindapyr is a novel chiral succinate dehydrogenase inhibitor used to control fungal diseases. The enantioselective effects of fluindapyr in paddy ecosystems are unknown. We developed a new chiral determination method of fluindapyr using ultrahigh performance liquid chromatography tandem mass spectrometry. The absolute configuration of the fluindapyr enantiomers was identified by an electron circular dichroism model. A new husk-based biochar material was used to optimize and establish a QuEchERs method for paddy soil determination. Under anaerobic conditions, the half-lives of R-fluindapyr and S-fluindapyr in paddy soil were 69.6 and 101.8 days, respectively. R-fluindapyr degraded more rapidly than S-fluindapyr. S-fluindapyr was 87.8 times more active against Rhizoctonia solani than R-fluindapyr. The enantioselective bioactivity mechanism was illustrated by molecular docking between the fluindapyr enantiomers and SDH of R. solani. The binding powers of R-fluindapyr and S-fluindapyr to proteins were -32.12 and - 42.91 kcal/mol, respectively. This study reports the stereoselectivity of fluindapyr about determination, degradation, bioactivity, and its mechanism. It provides a foundation for an in-depth study of fluindapyr at the enantiomer level.


Assuntos
Fungicidas Industriais , Poluentes do Solo , Fungicidas Industriais/química , Ecossistema , Estereoisomerismo , Simulação de Acoplamento Molecular , Poluentes do Solo/química , Espectrometria de Massas em Tandem/métodos , Solo/química
10.
Biomater Adv ; 140: 213055, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35941053

RESUMO

Herein, we designed and fabricated a MXene@polydopamine (MXene@PDA)-decorated chitosan non-woven fabric (M-CNF) hemostatic dressing with super hydrophilic properties for wound repair and regeneration. The M-CNF exhibit excellently wettability characteristics which can rapidly absorb water from blood. Moreover, M-CNF with 15 mg/mL MXene@PDA (M-CNF-15) show better antibacterial performance, excellent blood-clotting performance, better blood cell and platelet adhesion ability than CNF, displaying both active and passive hemostatic mechanisms to accelerate blood clotting in mouse-liver injury model. In addition, the M-CNF-15 also shows better wound healed performance than Tegaderm™ film in a full-thickness skin defect model, and further demonstrating that the MXene@PDA can promote fibrinogen reformation the at the initial phases of the wound healing process. Therefore, this strategy for designing and manufacturing of multi-functional M-CNF wound dressing will have great potential for active local hemostasis and wound repair and regeneration.


Assuntos
Quitosana , Hemostáticos , Nanofibras , Animais , Bandagens , Quitosana/farmacologia , Análise Custo-Benefício , Indóis , Camundongos , Nanofibras/uso terapêutico , Polímeros , Cicatrização
11.
Int J Biol Macromol ; 209(Pt B): 2151-2164, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500774

RESUMO

Herein, we designed and fabricated a biodegradable composite sponge which main component contained N, O-carboxymethyl chitosan (N,O-CS) and oxidized cellulose nanocrystals (TOCN) as a potential wound dressing for the prevention and treatment of postoperative adhesion. In order to improve antimicrobial properties of N,O-CS/TOCN composite sponges, natural antimicrobial agents (ε-Poly-l-Lysine,EPL) were successfully introduced and the EPL/N,O-CS/TOCN composite sponge exhibited excellent antibacterial properties and biological security. The EPL/N,O-CS/TOCN composite sponge can be degraded in vivo within 3 weeks. Finally, we analyzed the anti-adhesion performance of EPL/N,O-CS/TOCN composite sponge through a rat model of sidewall defect-cecum abrasion. These results demonstrated that EPL/N,O-CS/TOCN-treated group can effectively reduce the peritoneal adhesion formation than the commercial soluble gauze group and normal saline group, which mainly attribute to the excellent hemostatic function and tissue repair function of EPL/N,O-CS/TOCN composite sponge. It is believed that the EPL/N,O-CS/TOCN composite sponge will prove to be as a new medical device treat the internal tissue/organ repair and simultaneous prevention of postoperative adhesion.


Assuntos
Celulose Oxidada , Quitosana , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bandagens , Celulose Oxidada/farmacologia , Quitosana/análogos & derivados , Quitosana/química , Quitosana/farmacologia , Polilisina/farmacologia , Ratos , Aderências Teciduais/prevenção & controle
12.
Chemosphere ; 300: 134295, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35283146

RESUMO

Surfactants and pesticides can be simultaneously detected in the environment by the reason of their widespread use and large amounts of emissions. Due to the special amphipathicity of surfactants, it may have special effects on the environmental behaviors and toxic effects of other substances in the environment. There are few relevant studies at present. In this study, the effects of three surfactants on the degradation of the amide pesticide metolachlor in water-sediment system were investigated. The study found that the three surfactants had no significant effect on the degradation of metolachlor in the system at environmental concentrations. However, at critical micelle concentration, cationic surfactant octadecyl trimethyl ammonium bromide and nonionic surfactant nonylphenol polyoxyethylene ether promoted the degradation of metolachlor in water-sediment system. Anionic surfactant odium dodecylbenzene sulfonate (SDBS) prolonged the degradation half-life of metolachlor. The presence of surfactants not only affected the environmental behavior of pesticides. When they coexisted with pesticides, the joint toxicity to aquatic organisms cannot be ignored. This study found that the combined effects of three surfactants and metolachlor on the acute developmental toxicity of zebrafish embryos were all synergistic effects. The combined effects of two ionic surfactants and metolachlor on the acute toxicity of adult zebrafish were synergistic effects. Further study showed that co-exposure of SDBS and metolachlor increased the absorption of metolachlor by zebrafish. Combined exposure of SDBS and metolachlor caused oxidative stress in brain, gill and liver of zebrafish. The results showed that the simultaneous presence of anionic surfactants and pesticides in the environment may increase the environmental risk of pesticides.


Assuntos
Praguicidas , Tensoativos , Acetamidas , Animais , Praguicidas/toxicidade , Tensoativos/toxicidade , Água , Peixe-Zebra
13.
Mater Sci Eng C Mater Biol Appl ; 123: 111978, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812606

RESUMO

Herein, we fabricated novel self-healing, in situ injectable, biodegradable, and non-toxic hydrogels anti-adhesion barrier materials composed of N, O-carboxymethyl chitosan (N,O-CS) and oxidized dextran (ODA) without requiring any chemical cross-linking agent or external stimuli triggers for the prevention and treatment of post-operative peritoneal adhesions. The N,O-CS/ODA hydrogels have a good suitable gelation time, good cytocompatibility and hemocompatibility, good antibacterial activity, excellent biodegradable and biocompatible, and can effectively inhibit the adhesion of fibroblasts to the wound, thereby suggesting that N,O-CS/ODA hydrogels are suitable for preventing post-operative adhesion. Meanwhile, a rat injury sidewall-cecum abrasion model is developed to investigate the efficacy of these hydrogels in achieving post-operative anti-adhesion. A significant reduction of peritoneal adhesions (10% rat with lower score adhesion) is observed in the N,O-CS/ODA-hydrogel-treated group compared with the commercial hydrogel and control groups. These results demonstrated that N,O-CS/ODA hydrogel could effectively prevent post-operative peritoneal adhesion without side effects. Therefore, the N,O-CS/ODA hydrogels with multi-functional properties exhibit great potential for the prevention and treatment of postoperative adhesion.


Assuntos
Quitosana , Hidrogéis , Adesivos , Animais , Antibacterianos/farmacologia , Bandagens , Quitosana/farmacologia , Hemostasia , Hidrogéis/farmacologia , Ratos , Ratos Sprague-Dawley
14.
RSC Adv ; 11(30): 18417-18422, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480903

RESUMO

Bacterial infections can seriously harm human health, and the overuse of traditional antibiotics and antibacterial agents will increase the resistance of bacteria. Therefore, it is necessary to prepare a new kind of antibacterial material. In this work, a carbon dots and silver nanoparticles (CDs/AgNPs) composite has been synthesized in a one-step facile method without the introduction of toxic chemicals, wherein CDs could serve as a reducing and stabilizing agent. The CDs/AgNPs composite was characterized by UV-vis spectrophotometry, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM), which demonstrate that the silver nanoparticles were successfully synthesized in the composite. The zeta potential of the CDs/AgNPs composite was -15.3 mV, indicating that the composite possesses high stability. Furthermore, the composite also exhibited biocidal effects for both Gram-negative E. coli bacteria and Gram-positive S. aureus bacteria. Thus, the composite is considered to be of great potential in bactericidal and biomedical applications.

15.
Mater Sci Eng C Mater Biol Appl ; 118: 111324, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254961

RESUMO

Biodegradable and injectable hydrogels derived from natural polysaccharides have attracted extensive attention in biomedical applications due to their minimal invasiveness and ability to accommodate the irregular wound surfaces. In this work, we report the development of an in-situ-injectable, self-healing, antibacterial, hemostatic, and biocompatible hydrogel derived from the hybrid of N,O-carboxymethyl chitosan (N,O-CMC) and oxidized chondroitin sulfate (OCS), which did not require any chemical crosslinking. The N,O-CMC/OCS hydrogel could be readily produced under physiological conditions by varying the N,O-CMC-to-OCS ratio, relying on the Schiff base reaction between the -NH- functional groups of N,O-CMC and the -CHO functional groups of OCS. The results showed that the N,O-CMC2/OCS1 hydrogel had relatively long gelation time (133 s) and stable performances. The viability of NIH/3T3 cells and endothelial cells cultured with the N,O-CMC2/OCS1 hydrogel extract was roughly 85%, which demonstrated its low cell toxicity. Besides, the N,O-CMC2/OCS1 hydrogel revealed excellent antibacterial properties due to the inherent antibacterial ability of N,O-CMC. Importantly, the hydrogel tightly adhered to the biological tissue and demonstrated excellent in vivo hemostatic performance. Our work describing an injectable, self-healing, antibacterial, and hemostatic hydrogel derived from polysaccharides will likely hold good potential in serving as an enabling wound dressing material.


Assuntos
Quitosana , Hemostáticos , Animais , Antibacterianos/farmacologia , Bandagens , Sulfatos de Condroitina , Células Endoteliais , Hemostáticos/farmacologia , Hidrogéis , Camundongos , Cicatrização
16.
RSC Adv ; 10(35): 20588-20594, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35517719

RESUMO

Due to the development of the aerospace technology, the requirements for composite materials have become stricter. Thus, in this work, a completely novel technology, which has not been reported elsewhere, was used to prepare a composite of a carbon fiber-reinforced epoxy resin (CFRP) and ethylene-propylene-diene rubber (EPDM), which was denoted as CFRP/EPDM; CFRP and EPDM are commonly used as a shell and heat insulation layer, respectively, in the solid rocket industry. The composite system had good adhesive ability, as confirmed by the 90° peel strength test, even though the EPDM rubber is non-polar in nature. Additionally, the adhesive mechanism between CFRP and EPDM was determined using scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) indicated that the T d10% value of the CFRP/EDPM composite was slightly higher than that of CFRP. According to the nuclear magnetic resonance (NMR) spectroscopy results of the EPDM rubber and the interlaminar shear strength (ILSS) of CFRP, we can conclude that the co-curing method will not damage the properties of CFRP and EPDM.

17.
Mikrochim Acta ; 186(12): 825, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754860

RESUMO

Magnetic partially carbonized cellulose nanocrystals (MPC-CNC) were obtained by sulfuric acid treatment of microcrystalline cellulose (MCC) and then loaded with magnetic Fe3O4 nanoparticles. The material is shown to be a viable material for magnetic solid phase extraction of triazine and triazole pesticides from water. The pesticides (specifically: simazine, ametryn, prometryn, terbutryn, atrazine, triadimenol, epoxiconazole, myclobutanil, triadimefon and tebuconazole) were quantified by ultra HPLC in tandem with a triple quadrupole mass spectrometry (UHPLC-MS/MS). The effects of NaCl concentration, amount of adsorbent, vortex time, sample volume and pH value on extraction efficiency were optimized by Plackett-Burman design and Box-Behnken design methods. Under the optimal conditions, the method shows the following figures of merit: (a) Linear responses in the range from 0.02-10 µg L-1; (b) detection limits between 2.2 to 6.1 ng L-1 (for S/N = 3); (c) recoveries from spiked samples of 73.7-117.1% with relative standard deviations (RSDs) of 2.0-15.7%; and (d) an enrichment factor of 75. The method was successfully applied to the determination of the pesticides in five environmental water samples. Graphical abstract Schematic representation of the process of magnetic solid phase extracting pesticides in water using MPC-CNC. MCC-microcrystalline cellulose; PC-CNC- partially carbonized cellulose nanocrystals; MPC-CNC-magnetic partially carbonized cellulose nanocrystals.

18.
Int J Biol Macromol ; 134: 56-62, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071394

RESUMO

Suture is an important part of surgical operation, and closure of the wound associated with this procedure continuous to be a challenge in postoperative care. Currently, oxidized regenerated cellulose (ORC) is widely used in the absorption of hemostatic materials. However, there is no ORC medical suture product in the market. The objective of this article was to prepare novel braided sutures by TEMPO-mediated oxidation regenerated cellulose (TORC) to achieve a suturable material with biodegradability and ideal mechanical properties. Regenerated cellulose (RC) strands were made into sutures on a circular braiding machine, and TEMPO-mediated oxidation treatment was introduced alternatively after braiding. The RC sutures under different oxidation time were characterized by ATR-FTIR, electrical conductivity, XRD analysis, physical properties and in vitro degradation property. We further demonstrate that the RC sutures were oxidized and formed the carboxylic (-COOH) functional group. With the extension of oxidation duration, the carboxyl content in TORC sutures increased gradually from 5.1 to 10.4% and the strength, weight, and diameter of TORC sutures decreased gradually. Moreover, we proved that the knot-pull strength of TORC-45 declined by 77.8% after 28 days, thus this sutures fulfilled U.S. Pharmacopeia requirement of knot-pull strength. We have shown that TEMPO oxidation reaction significantly promoted the degradation of TORC sutures. Overall, TORC sutures were successfully produced with favorable biodegradability, revealing potential prospects of clinical applications.


Assuntos
Materiais Biocompatíveis/química , Celulose Oxidada/química , Celulose/química , Suturas , Fenômenos Químicos , Hidrólise , Teste de Materiais , Análise Espectral , Resistência à Tração
19.
ACS Appl Mater Interfaces ; 11(10): 9832-9840, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30758177

RESUMO

Fluorescent carbon dots (CDs) have been synthesized via the calcination method using natural gynostemma as the precursor, without any toxic ingredients or surface passivation chemicals. CDs have a narrow size distribution, and the mean particle size is about 2.5 nm. CDs exhibit good water dispersibility and can emit intense blue fluorescence under 365 nm UV light in an aqueous solution, which can be stable in different conditions. The biotoxicity of CDs on the embryonic development of zebrafish is evaluated, the hatch rate and survival rate of embryos are around 90%, and the malformation rate is less than 10%. Because of the excellent fluorescence stability and biocompatibility, CDs can be used in zebrafish for bioimaging. In addition, the antioxidative stress property of CDs is investigated both in vitro and in vivo, and the presence of CDs can promote the mRNA expression of related genes to encode more antioxidant proteins in zebrafish. Therefore, fluorescent CDs would be a potential candidate for bioimaging and treating diseases caused by excessive oxidation damage, such as cancer, senility, and other diseases associated with aging.


Assuntos
Antioxidantes/isolamento & purificação , Carbono/química , Gynostemma/química , Imagem Molecular/métodos , Animais , Antioxidantes/química , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Química Verde , Nitrogênio/química , Pontos Quânticos/química , Raios Ultravioleta , Peixe-Zebra
20.
Chem Asian J ; 14(2): 261-268, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30311734

RESUMO

Water contaminated with heavy metals has been identified as a significant threat to human health. Therefore, the development of safe and rapid water-treatment techniques is necessary. We have synthesized an eco-friendly γ-cyclodextrin metal-organic framework (MOF)-based nanoporous carbon (γ-CD MOF-NPC) material, conducted a comprehensive characterization of it, and found its rapid and effective CdII -removal capacity. The γ-CD MOF-NPC could effectively sequester a majority of cadmium ions within one minute, and it still demonstrated excellent adsorption ability under various conditions, including different pH, adsorbent dosage, and coexistent ions. The maximum adsorption capacity was calculated to be 140.85 mg g-1 by means of the Langmuir model. The adsorption was primarily due to the effect of ion exchange of oxygen-containing functional groups, as determined by studying the ζ potential and Fourier transform infrared spectroscopy. Flow-through experiments further proved the rapid CdII -removal capacity and potential of the practical application of γ-CD MOF-NPC in water treatment according to the cytotoxic data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...